Abstract

Adversity early in life substantially impacts prefrontal cortex (PFC) development and vulnerability to later-life psychopathology. Importantly, repeated adverse experiences throughout childhood increase the risk for PFC-mediated behavioral deficits more commonly in women. Evidence from animal models points to effects of adversity on later-life neural and behavioral dysfunction; however, few studies have investigated the neurobiological underpinnings of sex-specific, long-term consequences of multiple developmental stressors. We modeled early life adversity in rats via maternal separation (postnatal day (P)2-20) and juvenile social isolation (P21-35). In adulthood, anxiety-like behavior was assessed in the elevated zero maze and the presence and structural integrity of PFC perineuronal nets (PNNs) enwrapping parvalbumin (PV)-expressing interneurons was quantified. PNNs are extracellular matrix structures formed during critical periods in postnatal development that play a key role in the plasticity of PV cells. We observed a female-specific effect of adversity on hyperactivity and risk-assessment behavior. Moreover, females – but not males – exposed to multiple hits of adversity demonstrated a reduction in PFC PV cells in adulthood. We also observed a sex-specific, potentiated reduction in PV + PNN structural integrity. These findings suggest a sex-specific impact of repeated adversity on neurostructural development and implicate PNNs as a contributor to associated behavioral dysfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.