Abstract
A two-dimensional field simulator for microwave circuit modeling is described. It incorporates a number of recently developed concepts and advanced transmission line matrix (TLM) procedures. In particular, a discrete Green's function concept based on P.B. John's and K. Akhlarzad's time-domain diakoptics is realized, providing a high level of processing power through modularization of large structures at the field level, simulation of wideband matched loads or absorbing walls, modeling of frequency-dispersive boundaries in the time domain, and large-scale numerical preprocessing of passive structures. Nonlinear field modeling concepts are also implemented in the TLM field simulator. It can analyze two-dimensional circuits of arbitrary geometry containing both linear and nonlinear media. The circuit topology is input graphically. Both time-domain and frequency-domain responses can be computed and displayed. The capabilities and limitations of the simulator are discussed, and several microstrip and waveguide components are modeled to demonstrate its important features.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.