Abstract
ABSTRACTThe present paper is concerned with an in-depth study of the effects of rotation, two-temperature parameter and voids on the magneto-thermoelastic interactions in a homogeneous, isotropic, generalized half-space with gravity field. The formulation is applied within the frame-work of two-temperature generalized thermoelasticity based on the hyperbolic heat conduction model with one relaxation time. Using normal mode analysis technique for the physical variables appearing in the governing equations, we get the analytical expressions for displacement components, stress, thermodynamic temperature, conductive temperature and change in volume fraction field. The general solution obtained is then applied to a specific problem of an infinite half-space having isothermal boundary subjected to mechanical load. Variations of the considered variables through the vertical distance are illustrated graphically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.