Abstract

Summary Lithium-sulfur (Li-S) batteries are a promising next-generation energy-storage system due to their high theoretical energy density and low cost. However, the rapid capacity fading of high-sulfur-loading cathodes caused by the shuttle of soluble polysulfide intermediates between two electrodes heavily hinders the development of high-energy-density Li-S batteries. We develop in this work a powerful functional separator to suppress the polysulfide shuttle by coating two-dimensional nitrogen-doped porous carbon nanosheets on one surface of a commercial polypropylene separator. The high surface area, high content of nitrogen dopants, and close-packing laminar structure of the two-dimensional porous carbon nanosheets make them ideal to fabricate a lightweight and thin separator for high-energy-density Li-S batteries. The separator reported in this work endows the high-sulfur-loading cathodes made of commercial carbon materials with significantly enhanced performances that are comparable with or even superior to the state-of-the-art sulfur composite cathodes, opening up new opportunities for designing practical high-energy-density Li-S batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call