Abstract

The sluggishness of the complementary oxygen evolution reaction (OER) is reckoned as one of the major drawbacks in developing an energy-efficient green hydrogen-producing electrolyzer. An array of organic molecule oxidation reactions, operational at a relatively low potential, have been explored as a substitute for the OER. Glycerol oxidation reaction (GOR) has emerged as a leading alternative in this context because glycerol, a waste of biodiesel manufacturing, has become ubiquitous and accessible due to the significant growth in the biodiesel sector in recent decades. Additionally, the GOR generates several value-added organic compounds following oxidation that enhance the cost viability of the overall electrolysis reaction. In this study, a low-cost, room temperature operable, and energy-efficient synthetic methodology has been developed to generate unique two-dimensional CuO nanosheets (CuO NS). This CuO NS material was embedded on a carbon paper electrode, which showcased excellent glycerol electro-oxidation performance operational at a moderately low applied potential. Formic acid is the major product of this CuO NS-driven GOR (Faradaic efficiency ~80 %), as it is formed primarily via the glyceraldehyde oxidation pathway. This CuO NS material was also active for oxidizing other abundant alcohols like ethylene glycol and diethylene glycol, albeit at a relatively poor efficiency. Therefore, this robust CuO NS material has displayed the potential to be used in large-scale electrolyzers functioning with HER/GOR reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.