Abstract

A two-dimensional Boussinesq equation, \[u_{tt} - u_{xx} + 3(u^2)_{xx} - u_{xxxx} - u_{yy} = 0,\] is introduced to describe the propagation of gravity waves on the surface of water, in particular the head-on collision of oblique waves. This equation combines the two-way propagation of the classical Boussinesq equation with the (weak) dependence on a second spatial variable, as occurs in the two-dimensional Korteweg-de Vries (2D KdV) (or KPII) equation. Exact and general solitary-wave, two-soliton and resonant solutions are obtained from the Hirota bilinear form of the equation. The existence of a distributed-soliton solution is investigated, but it is shown that this is not a possibility. However the connection with the classical 2D KdV equation (which does possess such a solution) is explored via a suitable parametric representation of the dispersion relation.A three-soliton solution is also constructed, but this exists only if an auxiliary constraint among the six parameters is satisfied; thus the two-dimensional Boussinesq equation is not one of the class of completely integrable equations, confirming the analysis of Hietarinta (1987). This constraint is automatically satisfied for the classical Boussinesq equation (which is completely integrable). Graphical reproductions of some of the solutions of the two-dimensional Boussinesq equations are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.