Abstract

Multicast has been known as an efficient transmission technique for group-oriented applications such as multi-party video conferencing, video streaming for paid users, online gaming, and social networking. In this paper, we investigate physical-layer multicasting in mobile cellular downlink systems, where the antennas at base station are employed to transmit common signals to multiple users simultaneously. A central design problem of downlink physical-layer multicasting is the search for the optimal beamforming vector that maximizes the multicast rate. Traditionally, the problem has been formulated as a quadratically constrained quadratic programming problem and shown to be NP-hard in general. In this paper, starting from examining the Karush–Kuhn–Tucker stationary conditions, a new method based on two-user approximation is proposed for the search for the optimal beamforming vector. The method is able to achieve a much higher multicast rate than the existing methods and provides an attractive trade-off between performance and complexity, especially for the case of using a large number of antennas. Using a large number of antennas at base station, also known as the large-scale multiple-input and multiple-output technique, has been regarded widely as one of the most promising technologies to increase system capacity, coverage, and user throughput for future generations of mobile cellular systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call