Abstract

This paper presents a two-timescale duplex neurodynamic system for constrained biconvex optimization. The two-timescale duplex neurodynamic system consists of two recurrent neural networks (RNNs) operating collaboratively at two timescales. By operating on two timescales, RNNs are able to avoid instability. In addition, based on the convergent states of the two RNNs, particle swarm optimization is used to optimize initial states of the RNNs to avoid local minima. It is proven that the proposed system is globally convergent to the global optimum with probability one. The performance of the two-timescale duplex neurodynamic system is substantiated based on the benchmark problems. Furthermore, the proposed system is applied for L1 -constrained nonnegative matrix factorization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.