Abstract

Microalgae have attracted great research interest as a feedstock for producing a wide range of end-products. However, recent studies show that the tight processing integration technology for microalgae-based biorefinery makes production less economical and even has a negative impact on sustainability. In this study, a new two-tier superstructure optimization design methodology is proposed to locate the optimal processing pathway. This model is developed based on the decomposition strategy and the relationship-based investigation, coupling an outer-tier structure with an inner-tier structure, wherein the outlet flows of the middle stages is relaxed and then an appropriate level of redundancy for designing the processing is provided. Two scenarios are developed to compare the most promising biorefinery configurations under two different design option favors. By solving the mixed integer nonlinear programming model with the objective functions of maximizing the yield of the desired products and maximizing the gross operating margin, the optimization results obtained show the ability of this framework to provide the promising configurations and cost-effectiveness of microalgae-based biorefinery. Compared with Scenario 1, the optimized solutions in Scenario 2 feature a gross operating margin increase up to 27.09% and an increase in product yield up to 25.00%. The proposed method improves the original huge computing scale and ensures economics without simplifying the processing pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call