Abstract

This study proposes a two-tier distributed fuzzy logic based protocol (TTDFP) to improve the efficiency of data aggregation operations in multihop wireless sensor networks (WSNs). Clustering is utilized for efficient aggregation requirements in terms of consumed energy. In a clustered network, member (leaf) nodes transmit obtained data to cluster-heads (CHs) and CHs relay received packets to the base station. In multihop wireless networks, this CH-generated transmission occurs over other CHs. Due to the adoption of a multihop topology, hotspots and/or energy-hole problems may arise. This article proposes a TTDFP to extend the lifespan of multihop WSNs by taking the efficiency of clustering and routing phases jointly into account. TTDFP is a distribution-adaptive protocol that runs and scales sensor network applications efficiently. Additionally, along with the two-tier fuzzy logic based protocol, we utilize an optimization framework to tune the parameters used in the fuzzy clustering tier in order to optimize the performance of a given WSN. This paper also includes performance comparisons and experimental evaluations with the selected state-of-the-art algorithms. The experimental results reveal that TTDFP performs better than any other protocols under the same network setup considering metrics used for comparing energy-efficiency and network lifespan of the protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call