Abstract

A two-thermocouple probe, composed of two fine-wire thermocouples of unequal diameters, is a novel technique for estimating thermocouple time constants without any dynamic calibration of the thermocouple response. This technique is most suitable for measuring fluctuating temperatures in turbulent combustion. In the present study, the reliability and applicability of this technique are appraised in a turbulent wake of a heated cylinder (without combustion). A fine-wire resistance thermometer (cold wire) of fast response is simultaneously used to provide a reference temperature. A quantitative and detailed comparison between the cold-wire measurement and the compensated thermocouple ones shows that a previous estimation scheme gives thermocouple time constants smaller than appropriate values, unless the noise in the thermocouple signals is negligible and/or the spatial resolution of the two-thermocouple probe is sufficiently high. The scheme has been improved so as to maximize the correlation coefficient between the two compensated-thermocouple outputs. The improved scheme offers better compensation of the thermocouple response. The present approach is generally applicable to in situ parameter identification of a first-order lag system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.