Abstract
The interaction between magnetic field and thermal field in an elastic half-space, homogeneous and isotropic under two temperature and initial stress are investigated using a normal mode method in the framework of the Lord–Şhulman theory, with thermal shock and rotation. The medium rotates with a uniform angular velocity, and it is considered to be permeated by a uniform magnetic field and hydrostatic initial stress. The general solution we obtain is finally applied to a specific problem. The variations in temperature, the dynamical temperature, the stress and the strain distributions through the horizontal distance are calculated by an appropriate numerical example and graphically illustrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.