Abstract

A steady flow of electrons in a semiconductor between two parallel plane Ohmic contacts is studied on the basis of the semiconductor Boltzmann equation, assuming a relaxation-time collision term, and the Poisson equation for the electrostatic potential. A systematic asymptotic analysis of the Boltzmann–Poisson system for small Knudsen numbers (scaled mean free paths) is carried out in the case where the Debye length is of the same order as the distance between the contacts and where the applied potential is of the same order as the thermal potential. A system of drift-diffusion-type equations and their boundary conditions is obtained up to second order in the Knudsen number. A numerical comparison is made between the obtained system and the original Boltzmann–Poisson system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call