Abstract

The special-shaped tank dome of a launch vehicle is a large, thin-walled, curved structure that is difficult to form using the conventional center-restraint spinning method. This study proposes a two-step marginal-restraint mandrel-free spinning method for forming large domes. The finite element analysis results indicate that a larger roller fillet radius and larger feed ratios lead to a larger upper convex angle and the minimum thickness value for the bottom contour. This study explored the impact of shape parameter variations on the upper convexity and transition rounding angle on forming accuracy. The results show that the convexity of the bottom of the special-shaped domes increases with a larger roller fillet radius and larger feed ratios while the overall height decreases. The forming accuracy is adversely affected by larger transition rounding angles and smaller upper convexities. For the accurate forming of domes, the mutual coupling influence during two-step forming should be considered, and a suitable process and suitable trajectory compensation parameters must be carefully selected. Finally, the study verified that a two-step marginal-restraint mandrel-free spinning method with a 10 mm roller fillet radius, a 2 mm/r feed ratio, and the corresponding trajectory compensation can achieve the precise forming of 2250 mm thin-walled special-shaped domes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.