Abstract

A novel two-step inverse-scattering technique is proposed for through-the-wall microwave imaging. The approach is based on a regularization scheme developed in the framework of variable-exponent Lebesgue spaces, which enhances the quality of the reconstruction by properly tuning the exponent function that defines the adopted norm. Such a function is built directly from the available data by using a beamforming technique based on a delay-and-sum scheme. After an initial numerical assessment, the approach is validated against experimental measurements in a laboratory environment, with targets placed behind a brick wall. Measured data are collected in time domain by scanning the transmitting and receiving antennas in a multi-illumination and multi-view arrangement. The processing of experimental data is performed in the frequency domain, where data at multiple frequencies are extracted by a Fast Fourier Transform (FFT) and simultaneously processed by the imaging algorithm. The obtained imaging results confirm the good reconstruction capabilities of the developed inverse-scattering scheme in the case of both metallic and low-contrast targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.