Abstract

The afterglow of GRB 081029 showed unusual behavior, with a significant rebrightening being observed at the optical wavelength at about 3000 s after the burst. One possible explanation is that the rebrightening resulted from an energy injection. Here we present a detailed numerical study of the energy injection process and interpret the X-ray and optical afterglow light curves of GRB 081029. In our model, we have assumed two periods of energy injection, each with a constant injection power. One injection starts at 2.8 × 103 s and lasts for about 2500 s, with a power of 7.0 × 1047 erg s−1. This energy injection mainly accounts for the rapid rebrightening at about 3000 s. The other injection starts at 8.0 × 103 s and lasts for about 5000 s. The injection power is 3.5 × 1047 erg s−1. This energy injection can help to explain the slight rebrightening at about 10 000 s. It is shown that the observed optical afterglow, especially the marked rebrightening at about 3000 s, can be reproduced well. In the X-ray band, the predicted amplitude of the rebrightening is much shallower, which is also consistent with the observed X-ray afterglow light curve. It is argued that the two periods of energy injection can be produced by clumpy materials falling onto the central compact object of the burster, which leads to an enhancement of accretion and gives rise to a strong temporary outflow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call