Abstract

Conservation management of endangered African wild dogs (AWD; Lycaon pictus) can benefit greatly from development of sperm freezing and artificial insemination. Previous freezing attempts yielded nearly 0% motile sperm within 2 h of thawing. In this study, two canine freezing protocols were tested: Protocol 1: a one-step dilution in TRIS-20% egg yolk containing 8% glycerol; and Protocol 2: a two-step dilution in TRIS-20% egg yolk containing a final extender concentration of 5% glycerol and 0.5% Equex STM, coupled with a TRIS-citrate-fructose thawing solution. Semen was collected by electroejaculation from n = 24 AWDs, of which eight ejaculates of sufficient quality (four good quality with initial sperm motility of 75.0 ± 4.4% and four poor quality; showing rapid decrease in sperm motility to 3.3 ± 3.3% prior to freezing) were frozen. For good quality samples, motility and sperm motility index persisted for up to 8 h for Protocol 2, and was higher between 2 and 6 h after thawing with a decrease from 4 h of incubation. Motility dropped to nearly 0% after 2 h incubation for Protocol 1. Viability was higher for Protocol 2 throughout the 8 h of incubation, with a decrease after 6 h, compared to 4 h for Protocol 1. Acrosome integrity was higher for Protocol 2 throughout post-thaw incubation, with a decrease after 2 h for both protocols. Protocols did not differ in normal sperm morphology or DNA integrity. Poor quality samples yielded similar results, except for acrosome integrity, which declined for Protocol 2. In conclusion, a two-step dilution in TRIS-egg yolk-glycerol extender containing Equex STM yields significantly improved post-thaw quality and longevity of AWD spermatozoa, making it suitable for sperm banking and artificial insemination initiatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.