Abstract
ABSTRACTIn linear quantile regression, the regression coefficients for different quantiles are typically estimated separately. Efforts to improve the efficiency of estimators are often based on assumptions of commonality among the slope coefficients. We propose instead a two-stage procedure whereby the regression coefficients are first estimated separately and then smoothed over quantile level. Due to the strong correlation between coefficient estimates at nearby quantile levels, existing bandwidth selectors will pick bandwidths that are too small. To remedy this, we use 10-fold cross-validation to determine a common bandwidth inflation factor for smoothing the intercept as well as slope estimates. Simulation results suggest that the proposed method is effective in pooling information across quantile levels, resulting in estimates that are typically more efficient than the separately obtained estimates and the interquantile shrinkage estimates derived using a fused penalty function. The usefulness of the proposed method is demonstrated in a real data example.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.