Abstract
Compared with the identification of linear structural parameters, it is more difficult to conduct parametric identification of strong nonlinear structural systems, especially when only incomplete structural responses are available. Although the extended Kalman filter (EKF) is useful for structural identification with partial measurements of structural responses and can be extended for the identification of nonlinear structures, EKF approximates nonlinear system through Taylor series expansion and is therefore not effective for the identification of strong nonlinear structural systems. Other approaches such as the unscented Kalman filter (UKF) have been proposed for the identification of strong nonlinear problems. Based on the fact that nonlinearities exist in local areas of structures, a straightforward two-stage identification approach is proposed in this paper for the identification of strong nonlinear structural parameters with incomplete response measurements. In the first stage, the locations of nonlinearities are identified based on the EKF for the identification of the equivalent linear structures. In the second stage, the UKF is utilized to identify the parameters of strong nonlinear structural systems. Therefore, the parametric identification of strong nonlinear structural parameters is simplified by the proposed approach. Several numerical examples with different nonlinear models and locations are used to validate the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.