Abstract

The growth of cracks in equipment that is exposed to repeated thermal down shocks presents a complex problem of analysis. The transient, highly non-linear nature of the stress profiles that are developed during the shock in addition to localized plasticity and environmental interactions makes difficult any accurate analytical predictions. The use of current analysis techniques based on linear stress approximations can result in overly conservative results that may lead to unnecessary and costly component replacements. This paper outlines results from an experimental investigation into crack growth in notched, flat plate specimens exposed to repeated one-dimensional thermal shocks. Analysis of the results shows that a simple two-stage growth model may be applicable for describing the crack growth. The model is comprised of a high strain fatigue region where crack growth is in the plastic range and a region where growth is described by linear elastic fracture mechanics. Allowances for the effects of mean loads and environment on the crack growth are also included in the model. The model is currently limited to the consideration of carbon steel components, operating at temperatures below the creep range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.