Abstract
Demand response involves system operators using incentives to modulate electricity consumption during peak hours or when faced with an incidental supply shortage. However, system operators typically have imperfect information about their customers’ baselines, that is, their consumption had the incentive been absent. The standard approach to estimate the reduction in a customer’s electricity consumption then is to estimate their counterfactual baseline. However, this approach is not robust to estimation errors or strategic exploitation by the customers and can potentially lead to overpayments to customers who do not reduce their consumption and under payments to those who do. Moreover, optimal power consumption reductions of the customers depend on the costs that they incur for curtailing consumption, which in general are private knowledge of the customers, and which they could strategically misreport in an effort to improve their own respective utilities even if it deteriorates the overall system cost. The two-stage mechanism proposed in this letter circumvents the aforementioned issues. In the day-ahead market, the participating loads are required to submit only a probabilistic description of their next-day consumption and costs to the system operator for day-ahead planning. It is only in real-time, if and when called upon for demand response, that the loads are required to report their baselines and costs. They receive credits for reductions below their reported baselines. The mechanism for calculating the credits guarantees incentive compatibility of truthful reporting of the probability distribution in the day-ahead market and truthful reporting of the baseline and cost in real-time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.