Abstract

It has been recognized that for appropriately ordered data, hidden Markov models (HMM) with local false discovery rate (FDR) control can increase the power to detect significant associations. For many high-throughput technologies, the cost still limits their application. Two-stage designs are attractive, in which a set of interesting features or biomarkers is identified in a first stage, and then followed up in a second stage. However, to our knowledge no two-stage FDR control with HMMs has been developed. In this paper, we study an efficient HMM-FDR based two-stage design, using a simple integrated analysis procedure across the stages. Numeric studies show its excellent performance when compared to available methods. A power analysis method is also proposed. We use examples from microbiome data to illustrate the methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.