Abstract
Segmentation of Magnetic Resonance Imaging (MRI) brain image data has a significant impact on the computer guided medical image diagnosis and analysis. However, due to limitation of image acquisition devices and other related factors, MRI images are severely affected by the noise and inhomogeneity artefacts which lead to blurry edges in the intersection of the intra-organ soft tissue regions, making the segmentation process more difficult and challenging. This paper presents a novel two-stage fuzzy multi-objective framework (2sFMoF) for segmenting 3D MRI brain image data. In the first stage, a 3D spatial fuzzy c-means (3DSpFCM) algorithm is introduced by incorporating the 3D spatial neighbourhood information of the volume data to define a new local membership function along with the global membership function for each voxel. In particular, the membership functions actually define the underlying relationship between the voxels of a close cubic neighbourhood and image data in 3D image space. The cluster prototypes thus obtained are fed into a 3D modified fuzzy c-means (3DMFCM) algorithm, which further incorporates local voxel information to generate the final prototypes. The proposed framework addresses the shortcomings of the traditional FCM algorithm, which is highly sensitive to noise and may stuck into a local minima. The method is validated on a synthetic image volume and several simulated and in-vivo 3D MRI brain image volumes and found to be effective even in noisy data. The empirical results show the supremacy of the proposed method over the other FCM based algorithms and other related methods devised in the recent past.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.