Abstract

A two-stage fully differential CMOS amplifier comprising inverters as input structures and employing self-biasing techniques is presented. The proposed amplifier benefits from an optimum compensation through time-domain optimization which permits achieving high energy efficiency. Moreover, it achieves the highest efficiency of its class and although it relies on a quasi-class-A topology, it is comparable to class-AB amplifiers. Detailed circuit analyses such as differential-mode, common-mode feedback, noise, slew rate, and input/output range are carried out. Based on these analyses, a manual design methodology and a genetic algorithm based optimization are presented. Finally, the most relevant experimental results for an integrated circuit prototype designed in a 0.13 μm 1.2 V standard CMOS technology are shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.