Abstract

Sample purification and enrichment is an important and usually time-consuming step for on-chip nucleic acid detection and analysis. This paper presents an electrophoretic DNA focusing method in microfluidic devices to enrich nucleic acid concentration by around 2700-fold. The electrical waveforms applied to five individual electrodes are such designed that DNAs move successively to the collection electrodes at high speed, while the interferences from bubbles due to electrohydrolysis are minimized. In a spiral channel with a total length of 48 cm, 1 ml DNA sample is purified and enriched by 57 times at a flow rate of 30 μl/min at first. The captured DNAs are then released and transported to the second microfluidic chamber where DNAs are collected and concentrated by 49 times. Thus, in about 40 min, the two-stage device can extract DNAs from 1 ml sample volume and enrich its concentration by 2790-fold. A trade-off exists between the process throughput and the DNA collection efficiency. A DNA capture efficiency of 99.7 % is reached when the flow rate is 1 μl/min, and the maximum DNA capture throughput is achieved at a flow rate of 30 μl/min. As a platform technology, the device can be integrated into bio-sensing and genetic analysis assays for DNA extraction and pre-concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call