Abstract

We propose a new dynamic model which can be used within blob trackers to track the target's center of gravity. A strong point of the model is that it is designed to track a variety of motions which are usually encountered in applications such as pedestrian tracking, hand tracking, and sports. We call the dynamic model a two-stage dynamic model due to its particular structure, which is a composition of two models: a liberal model and a conservative model. The liberal model allows larger perturbations in the target's dynamics and is able to account for motions in between the random-walk dynamics and the nearly constant-velocity dynamics. On the other hand, the conservative model assumes smaller perturbations and is used to further constrain the liberal model to the target's current dynamics. We implement the two-stage dynamic model in a two-stage probabilistic tracker based on the particle filter and apply it to two separate examples of blob tracking: 1) tracking entire persons and 2) tracking of a person's hands. Experiments show that, in comparison to the widely used models, the proposed two-stage dynamic model allows tracking with smaller number of particles in the particle filter (e.g., 25 particles), while achieving smaller errors in the state estimation and a smaller failure rate. The results suggest that the improved performance comes from the model's ability to actively adapt to the target's motion during tracking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call