Abstract

In low-dose computed tomography (LDCT) lung cancer screening, soft tissue is hardly appreciable due to high noise levels. While deep learning-based LDCT denoising methods have shown promise, they typically rely on structurally aligned synthesized paired data, which lack consideration of the clinical reality that there are no aligned LDCT and normal-dose CT (NDCT) images available. This study introduces an LDCT denoising method using clinically structure-unaligned but paired data sets (LDCT and NDCT scans from the same patients) to improve lesion detection during LDCT lung cancer screening. A cohort of 64 patients undergoing both LDCT and NDCT was randomly divided into training (n=46) and testing (n=18) sets. A two-stage training approach was adopted. First, Gaussian noise was added to NDCT data to create simulated LDCT data for generator training. Then, the model was trained on a clinically structure-unaligned paired data set using a Wasserstein generative adversarial network (WGAN) framework with the initial generator weights obtained during the first stage of training. An attention mechanism was also incorporated into the network. Validated on a clinical CT data set, our proposed method outperformed other available methods [CycleGAN, Pixel2Pixel, block-matching and three-dimensional filtering (BM3D)] in noise removal and detail retention tasks in terms of the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and root mean square error (RMSE) metrics. Compared with the results produced by BM3D, our method yielded an average improvement of approximately 7% in terms of the three evaluation indicators. The probability density profile of the denoised CT output produced using our method best fit the reference NDCT scan. Additionally, our two-stage model outperformed the one-stage WGAN-based model in both objective and subjective evaluations, further demonstrating the higher effectiveness of our two-stage training approach. The proposed method performed the best in removing noise from LDCT scans and exhibited good detail retention, which could potentially enhance the lesion detection and characterization effects obtained for soft tissues in the scanning scope of LDCT lung cancer screening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call