Abstract

The adsorption of methylene blue onto bentonite in a batch adsorber has been studied. Three kinetic models, the intraparticle diffusion equation and the pseudo first and second order equations, were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients for each kinetic model were calculated and discussed. It was shown that the adsorption of methylene blue onto bentonite could be described by the pseudo second order equation. Adsorption of methylene blue onto bentonite followed the Langmuir isotherm. A model has been developed for the design of a two stage batch adsorber based on pseudo second order adsorption kinetics. The model has been optimized with respect to operating time in order to minimize total contact time to achieve a specified amount of methylene blue removal using a fixed mass of adsorbent. The results of two stage batch adsorber design studies showed that the required times for specified amounts of methylene blue removal significantly decreased. This design is particularly suitable for low-cost adsorbents/adsorption systems when minimising contact time is a major operational and design criterion and a significant volume of effluent needs to be treated in the minimum amount of time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call