Abstract

In this paper, the estimation of doubly spread acoustic channels is investigated. By parameterizing the amplitude variation and delay variation of each path with polynomial approximation, this paper derives a mathematical model for the discrete-time channel input–output relationship tailored to single-carrier block transmissions. Based on the mathematical model, the channel estimation problem is transformed into estimation of the low-dimensional parameter sets (amplitude, delay, Doppler scale) that characterize the channel. A two-stage sparse channel estimation technique is then developed, which estimates the delay and Doppler scale sequentially. Compared to the one-stage joint estimation, the two-stage estimation approach greatly reduces the number of candidates on the delay-Doppler scale grid searched by the orthogonal matching pursuit (OMP) algorithm, that is, the dictionary size is reduced dramatically. As a result, the computational complexity is much lower. Further, the two-stage approach demonstrated higher levels of accuracy in computer simulations and led to better detection performance when applied to experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.