Abstract

A model is presented describing the effect on spin-polarized transient EPR signals caused by incoherent state hopping between two sites. It is shown that the size of the spin state space can be reduced by half to the subspace described by the site-average Hamiltonian and that the dynamics of the system results in a redistribution of the population between its eigenstates. Analytical expressions for the rates of population redistribution and the line shape are derived for the general case in which the back-and-forth rates are unequal. The EPR signals calculated using these expressions are in very good agreement with those obtained by direct numerical solution of the density matrix rate equations. The model is then used to investigate the influence of exciton hopping on triplet state transient EPR spectra. Using the triplet state of the primary donor of Photosystem I as an example, it is shown that the influence of unequal hopping rates becomes more pronounced in the spectrum at longer delay times after the laser flash.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.