Abstract
Transform-based algorithms have wide applications in applied probability, but rarely provide computable error bounds to guarantee the accuracy. We propose an inversion algorithm for two-sided Laplace transforms with computable error bounds. The algorithm involves a discretization parameter C and a truncation parameter N. By choosing C and N using the error bounds, the algorithm can achieve any desired accuracy. In many cases, the bounds decay exponentially, leading to fast computation. Therefore, the algorithm is especially suitable to provide benchmarks. Examples from financial engineering, including valuation of cumulative distribution functions of asset returns and pricing of European and exotic options, show that our algorithm is fast and easy to implement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.