Abstract

In this paper, we propose a two-phase approach to solve a combined routing and scheduling problem that occurs in the textile industry: fabrics are dyed by dye-jets and transported by forklifts. The objective is to minimize the cost of the unproductive activities, i.e., the dye-jet setup times and the forklift waiting time. The first phase solves an integer linear program to assign jobs (fabrics) to dye-jets while minimizing the setup cost; we compare an arc-based and a path-based formulation. The second phase uses a mixed-integer linear program for the dye-jet scheduling and both the routing and scheduling of forklifts. Experiments are performed on real data provided by a major multinational company, and larger test problems are randomly generated to assess the algorithm. The tests were conducted using Cplex 12.6.0 and a column generation solver. The numerical results show that our approach is efficient in terms of both solution quality and computational time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call