Abstract

Foraging movements of predator play an important role in population dynamics of prey-predator systems, which have been considered as mechanisms that contribute to spatial self-organization of prey and predator. In nature, there are many examples of prey-predator interactions where prey is immobile while predator disperses between patches non-randomly through different factors such as stimuli following the encounter of a prey. In this work, we formulate a Rosenzweig-MacArthur prey-predator two patch model with mobility only in predator and the assumption that predators move towards patches with more concentrated prey-predator interactions. We provide completed local and global analysis of our model. Our analytical results combined with bifurcation diagrams suggest that: (1) dispersal may stabilize or destabilize the coupled system; (2) dispersal may generate multiple interior equilibria that lead to rich bistable dynamics or may destroy interior equilibria that lead to the extinction of predator in one patch or both patches; (3) Under certain conditions, the large dispersal can promote the permanence of the system. In addition, we compare the dynamics of our model to the classic two patch model to obtain a better understanding how different dispersal strategies may have different impacts on the dynamics and spatial patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.