Abstract

View-independent and view-dependent image synthesis techniques, represented by radiosity and ray tracing, respectively, are discussed. View-dependent techniques are found to have advantages for calculating the specular component of illumination and view-independent techniques for the diffuse component. Based on these observations a methodology is presented for simulating global illumination within complex environments using a two-pass approach. The first pass is view-independent and is based on the hemi-cube radiosity algorithm, with extensions to include the effects of diffuse transmission, and specular to diffuse reflection and transmission. The second pass is view-dependent and is based on an alternative to distributed ray tracing in which a z-buffer algorithm is used to sample the intensities contributing to the specularly reflected or transmitted intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.