Abstract

This paper proposes a novel two-nozzle cable-driven parallel robot (CDPR) for 3D printing building construction. This system has two independently moving nozzles mounted on the existing printing head. Thus, the printing time can be reduced dramatically with this system as the travel path of the printing head can be reduced to almost half thanks to those two nozzles that print almost half of the printing contour. To fully take advantage of two nozzle structures effectively, the path of the printing head is optimized to secure the minimum travel length of both the printing head and two nozzles. The smoothness of the optimal path is secured by applying the non-uniform rational B-splines (NURBS). In addition, free vibration of the proposed CDPR printer’s structure is analyzed to improve the printing quality and help the control of the proposed CDPR by using a finite element formulation of cables of the proposed robot. From the analysis results, the critical design guide—stiffness of the proposed structure could be raised by increasing the minimum cable tension in the tension distribution optimization algorithm—was obtained as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.