Abstract

In this paper, a two-loop implicit sparse matrix numerical integration (TLISMNI) procedure for the solution of constrained rigid and flexible multibody system differential and algebraic equations is proposed. The proposed method ensures that the kinematic constraint equations are satisfied at the position, velocity and acceleration levels. In this method, a sparse Lagrangian augmented form of the equations of motion that ensures that the constraints are satisfied at the acceleration level is first used to solve for all the accelerations and Lagrange multipliers. The independent coordinates and velocities are then identified and integrated using HTT or Newmark formulas, expressed in this paper in terms of the independent accelerations only. The constraint equations at the position level are then used within an iterative Newton–Raphson procedure to determine the dependent coordinates. The dependent velocities are determined by solving a linear system of algebraic equations. In order to effectively exploit efficient sparse matrix techniques and have minimum storage requirements, a two-loop iterative method is proposed. Equally important, the proposed method avoids the use of numerical differentiation which is commonly associated with the use of implicit integration methods in multibody system algorithms. Numerical examples are presented in order to demonstrate the use of the new integration procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.