Abstract

We propose a new two-level variational model in Sobolev–Orlicz spaces with nonstandard growth conditions of the objective functional and discuss its applications to the spatiotemporal interpolation of multispectral satellite images. At the first level, we deal with the temporal interpolation problem that can be cast as a state constrained optimal control problem for anisotropic convection–diffusion equation, whereas at the second level we solve a constrained minimization problem with a nonstandard growth energy functional that lives in variable Sobolev–Orlicz spaces. The characteristic feature of the proposed model is the fact that the variable exponent, which is associated with nonstandard growth in spatial interpolation problem, is unknown a priori and it depends on the solution of the first-level optimal control problem. It makes this spatiotemporal interpolation problem rather challenging. In view of this, we discuss the consistency of the proposed model, study the existence of optimal solutions, and derive the corresponding optimality systems. In particular, we apply this approach to the well-known prediction problem of the Daily MODIS Surface Reflectance at the Landsat-Like Resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.