Abstract

A simple, first-principle treatment is presented for estimating, within about a factor-of-two, how K-shell X-radiation from the plasma radiation source scales with plasma, pulsed-power, and imploding-load parameters. The transparency of this two-level model clarifies the relations between X-ray yield and underlying physical processes, provides simple analytic expressions for optimal load parameters and associated yields, and establishes links between radiating-load performance and system constraints imposed by other processes. The two-level model provides results similar to another one-zone model based on phenomenological extrapolations of selected one-dimensional radiation-hydrodynamic calculations. The model compares well with K-shell radiation results from Hawk neon gas puff and Saturn aluminum large-wire-number array experiments, provided that assumed compression ratios are less than those inferred from X-ray pinhole images. The reduced compression ratios required by the model can be traced to its one-zone nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.