Abstract

We devise a new, two-level discrete-particle model to simulate ordered colloidal structures with vastly different scales. We use the molecular dynamics paradigm with a Lennard-Jones-type potential to define colloidal particle system and dissipative particle dynamics (DPD) to model the solvent. The initially mixed, disordered particle ensemble undergoes a phase transition. We observe the spontaneous creation of spherical or rod-like micelles and their crystallization in stable hexagonal or worm-like structures, respectively. The ordered arrays obtained by using the particle model are similar to the two-dimensional colloidal crystals observed in laboratory experiments. The micelle shape depends on the ratio between the scaling factors of the colloid–colloid to colloid–solvent particle interactions. The properties of the DPD solvent, such as the strongly variable viscosity and partial pressure, determine the speed of crystallization. The intriguing features of colloidal arrays and their exotic symmetries, which persist also over two-dimensional domains, can be simulated numerically by using the two-level discrete-particle approach and are illustrated here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.