Abstract

This paper proposes a novel two layer differential evolutionary algorithm with multi-mutation strategy (TLDE) for solving the economic emission dispatch (EED) problem involving random wind power. In recent years, renewable energy such as wind power is more and more participated in the power systems to address the problems of fossil energy shortage and environmental pollution. Hence, the EED problem with the availability of random wind power is investigated in this paper. Due to the uncertain nature of wind speed, the Weibull probability distribution function is used to model the random wind power. In order to improve the search ability, TLDE divides the population into two layers according to the fitness ranking, and individuals in the two layers are treated differently to fully investigate their own potential. The two layers can cooperate with each other to further enhance the search performance by utilizing an information sharing strategy. Also, an adaptive restart scheme is introduced to avoid falling into stagnation. The performance of the proposed TLDE is testified on the 40 units system with 2 modified wind turbines. The experimental results demonstrate that the TLDE method can achieve precise dispatch strategy in EED problem with random wind power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.