Abstract

Sensitive detection of microRNA (miRNA), one of the most promising biomarkers, plays crucial roles in cancer diagnosis. However, the low expression level of miRNA makes it extremely urgent to develop ultrasensitive and highly selective strategies for quantification of miRNA. Herein, a DNA machine is rationally constructed for amplified detection and imaging of low-abundance miRNA in living cells based on the toehold-mediated strand displacement reaction (TMSDR). The isothermal and enzyme-free DNA machine with low background leakage is fabricated by integrating two DNA circuits into a cascade system, in which the output of one circuit serves as the input of the other one. Once the DNA machine is transfected into breast cancer cells, the overexpressed miRNA-203 initiates the first-layer circuit through TMSDR, leading to the concentration variation of fuel strands, which further influences the assembly of hairpin DNA in the second-layer circuit and the occurrence of fluorescence resonance energy transfer (FRET) for fluorescence imaging. Benefiting from the cascade of the two-layer amplification reaction, the proposed DNA machine acquires a detection limit down to 4 fM for quantification of miR-203 and a 10 000-fold improvement in amplification efficiency over the single circuit. Therefore, the two-layer circuit cascade-based DNA machine provides an effective platform for amplified analysis of low-abundance miRNA with high sensitivity, which holds great promise in biomedical and clinical research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.