Abstract

Herein, we report the synthesis of an oxidized pine needle-thiosemicarbazone Schiff base (OPN-TSC) from whole pine needles (WPN) as a dual-purpose adsorbent to remove a cationic dye, methylene blue (MB), and Hg2+ ions in separate processes. The adsorbent was synthesized by periodate oxidation of WPN followed by a reaction with thiosemicarbazide. The syntheses of OPN and OPN-TSC were confirmed by FTIR, XRD, FESEM, EDS, BET, and surface charge analysis. The emergence of new peaks at 1729cm-1 (-CHO stretching) and 1639cm-1 (-COO- stretching) in the FTIR spectrum of OPN confirmed the oxidation of WPN to OPN. FTIR spectrum of OPN-TSC has a peak at 1604cm-1 (C = N stretching), confirming the functionalization of OPN to OPN-TSC. XRD studies revealed an increase in the crystallinity of OPN and a decrease in the crystallinity of OPN-TSC because of the attachment of thiosemicarbazide to OPN. The values of %removal for MB and Hg2+ ions by OPN-TSC were found to be 87.36% and 98.2% with maximum adsorption capacity of 279.3mg/g and 196mg/g for MB and Hg2+ ions, respectively. The adsorption of MB followed pseudo-second-order kinetics with correlation coefficient (R2 of 0.99383) and Freundlich isotherm (R2 = 0.97239), whereas Hg2+ ion removal demonstrated the Elovich (R2 = 0.97076) and Langmuir isotherm (R2 = 0.95110). OPN-TSC is regenerable with significant recyclability up to 10 cycles for both the adsorbates. The studies established OPN-TSC as a low-cost, sustainable, biodegradable, environmentally benign, and promising adsorbent for the removal of hazardous cationic dyes and toxic metal ions from wastewater and industrial effluents, especially the textile effluents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.