Abstract

An ocean carbon cycle model driven by a constant flow field produced by a two-dimensional thermohaline circulation model is developed. Assuming that the biogenic carbon in the oceans is in a dynamic equilibrium, the inorganic carbon cycle is investigated. Before the oceanic uptake of CO2 is carried out, the investigation of 14C distributions in the oceans, including natural and bomb-produced 14C, is conducted by using different values of the exchange coefficient of CO2 for different flow fields (different vertical diffusivities) to test the performance of the model. The suitable values of the exchange coefficient and vertical diffusivities are chosen for the carbon cycle model. Under the forcing of given preindustrial atmospheric CO2 concentration of 280 ppmv, the carbon cycle model is integrated for seven thousand years to reach a steady state. For the human perturbation, two methods including the prescribed atmospheric pCO2 and prescribed industrial emissions are used in this work. The results from the prescribed atmospheric pCO2 show that the oceans take up 36% of carbon dioxide released by human activities for the period of 1980-1989, while the results from the prescribed industrial emission rates show that the oceans take up 34% of carbon dioxide emitted by industrial sources for the same period. By using the simple method of subtracting industrial emission rate from the total atmosphere+ocean accumulating rate, it can be deduced that before industrial revolution a non-industrial source exists, while after 1940 an extra sink is needed, and that a total non-industrial source of 45 GtC is obtained for the period of 1790-1990.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call