Abstract

SUMMARY We develop a spectral-element method for computing the full 3-D moment-tensor and point-force response of a spherically symmetric earth model in a 2-D semi-circular computational domain. The full elastodynamic response to a six-component moment tensor at an earthquake hypocentre and a three-component point force at a seismic station can be determined by solving six independent 2-D problems, three for a monopole source, two for a dipole source, and one for a quadrupole source. This divide-and-conquer 3-D to 2-D reduction strategy provides a basis for the efficient computation of exact Frechet sensitivity kernels in a spherically symmetric earth, with all wavefield features accounted for. To focus on the novel inclusion of the full source in a cylindrical coordinate system, we describe the 2-D weak formulation of the set of elastodynamic equations, its discretization using spectral elements, and the associated axial boundary conditions and source representations for each of the excitation types in the case of a homogeneous, solid elastic sphere. The method is numerically validated against both analytical solutions and normal-mode summation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.