Abstract

Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has been numerically simulated by using the dens mesh finite element source code program using Visual FORTRAN language. This code includes the mesh generator based on the advancing front method as well as all the pre and post process for the crack growth simulation under linear elastic fracture mechanics theory. The stress state at a crack tip has been described by the stress intensity factor which is related to the rate of crack growth. The displacement extrapolation technique is employed to obtain crack tip singular stresses and the stress intensity factors values. The crack direction is predicted using the maximum circumferential theory. Verification of the predicted stress intensity factors and crack path direction are validated with relevant experimental data and numerical results obtained by other researchers with good agreements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.