Abstract
In this work we study a two-dimensional problem in electromagneto-thermoelasticity for a half-space whose surface is subjected to a non-uniform thermal shock and is stress free in the presence of a transverse magnetic field. The problem is in the context of the theory of generalized thermoelasticity with one relaxation time. Laplace and exponential Fourier transform techniques are used to obtain the solution by a direct approach. The solution of the problem in the physical domain is obtained by using a numerical method for the inversion of the Laplace transforms based on Fourier series expansions. The distributions of the temperature, the displacement, the stress and the induced magnetic and electric fields are obtained. The numerical values of these functions are represented graphically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.