Abstract
In this work, we study an electron subjected to a harmonic oscillator potential confined in a circle of radius r0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$r_0$$\\end{document} and in the presence of a constant electric field. We obtain energies and eigenfunctions for three different confinement radii as a function of the electric field strength. We have used the linear variational method by constructing the trial function as a linear combination of two-dimensional confined harmonic oscillator wave functions. We calculate the radial standard deviation as a measure of the dispersion of the probability density. We also computed the Shannon entropy and Fisher information, in configuration and momentum spaces, as localization-delocalization measures for three different confinement radii and as a function of the electric field strength. We find that Shannon entropy and Fisher information are more reliable than variance in determining electron location. The behaviour of Shannon entropy and Fisher information curves is shown to depend on each specific state under study.Graphical abstract
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.