Abstract

Machine Learning, especially deep learning, has been used in typical x-ray computed tomography (CT) applications, including image reconstruction, image enhancement, imagedomain feature detection and imagedomain feature characterization. To our knowledge, this is the first study on machine learning for feature detection and analysis directly based on CT projection data. Specifically, we present neural network methods for blood vessel detection and characterization in the sinogram domain avoiding any partial volume, beam hardening, or motion artifacts introduced during reconstruction. First, we estimate sinogramdomain vessel maps using a residual encoder-decoder convolutional neural network (REDCNN). Next, we estimate the vessel centerline and we extract the vessel-only sinogram from the original sinogram, eliminating any background information. Finally, we use a fully connected neural network to estimate the vessel lumen cross-sectional area from the vessel-only sinogram. We trained and tested the proposed methods using CatSim simulations, real CT measurements of vessel phantoms, and clinical data from the NIH CT image database. We achieved encouraging initial results showing the feasibility of CT analysis in the sinogram domain. In principle, sinogramdomain analysis should be possible for many other and more complicated clinical CT analysis tasks. Further studies are needed for this sinogramdomain analysis approach to become practical for clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.