Abstract
The effect of a thin fluid mud layer on nearshore two-dimensional wave transformation is studied through numerical modeling and wave basin experiments. The wave basin experiments were conducted on both muddy and fixed beds. A mixture of commercial kaolinite and tap water was used as fluid mud layer, where its rheological viscoelastic parameters were derived from rheometer cyclic tests. The results can be utilized for better understanding of the complex wave transformation phenomena under real field conditions where the combined effects of shoaling, refraction, and diffraction as well as wave energy dissipation due to existing mud beds and wave breaking jointly occur. A dissipation model was coupled to the combined refraction and diffraction 1 (REF/DIF 1) wave model to develop a numerical wave height transformation model for muddy beaches. The proposed model was utilized to analyze the experimental data on muddy beds. Comparing the computed values of wave heights over mud layer with the corresponding measurements shows a fair agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.