Abstract

The coupling of optical and electronic degrees of freedom together with quantum confinement in low-dimensional electron systems is particularly interesting for achieving exotic functionalities in strongly correlated oxide electronics. Recently, high room-temperature mobility has been achieved for a large bandgap transparent oxide – BaSnO3 upon extrinsic La or Sb doping, which has excited significant research attention. In this work, we report the realization of a two-dimensional electron gas (2DEG) on the surface of transparent BaSnO3 via oxygen vacancy creation, which exhibits a high carrier density of ~7.72 × 1014 cm−2 and a high room-temperature mobility of ~18 cm2·V−1·s−1. Such a 2DEG is rather sensitive to strain and a less than 0.1% in-plane biaxial compressive strain leads to a giant resistance enhancement of ~350% (more than 540 kΩ/□) at room temperature. Thus, this work creates a new path to exploring the physics of low-dimensional oxide electronics and devices applicable at room temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call